Sinrui Technology
Sinrui Technology
Home » Products » Customized Stamping Shell
Customized Stamping Shell

Please do contact us if you need a custom design

We accept any type of customization.

Send Enquiry
Home » Products » Customized Stamping Shell
Customized Stamping Shell

Please do contact us if you need a custom design

We accept any type of customization.

Send Enquiry

Description

Metal stamping is a cold-forming process that makes use of dies and stamping presses to transform sheet metal into different shapes. Pieces of flat sheet metal, typically referred to as blanks, is fed into a sheet metal stamping press that uses a tool and die surface to form the metal into a new shape. Production facilities and metal fabricators offering stamping services will place the material to be stamped between die sections, where the use of pressure will shape and shear the material into the desired final shape for the product or component.
Basic Concepts of Metal Stamping
Metal stamping, also referred to as pressing, is a low-cost high-speed manufacturing process that can produce a high volume of identical metal components. Stamping operations are suitable for both short or long production runs, and be conducted with other metal forming operations, and may consist of one or more of a series of more specific processes or techniques, such as:

Punching
Blanking
Embossing
Coining
Bending
Flanging
Punching and blanking refer to the use of a die to cut the material into specific forms. In punching operations, a scrap piece of material is removed as the punch enters the die, effectively leaving a hole in the workpiece. Blanking, on the other hand, removes a workpiece from the primary material, making that removed component the desired workpiece or blank.

Embossing is a process for creating either a raised or recessed design in sheet metal, by pressing the raw blank against a die that contains the desired shape, or by passing the material blank through a roller die.

Coining is a bending technique wherein the workpiece is stamped while placed between a die and the punch or press. This action causes the punch tip to penetrate the metal and results in accurate, repeatable bends. The deep penetration also relieves internal stresses in the metal workpiece, resulting in no spring back effects.

Bending refers to the general technique of forming metal into desired shapes such as L, U, or V-shaped profiles. The bending process for metal results in a plastic deformation which stresses above the yield point but below the tensile strength. Bending typically occurs around a single axis.

Flanging is a process of introducing a flare or flange onto a metal workpiece through the use of dies, presses, or specialized flanging machinery.

Metal stamping machines may do more than just stamping; they can cast, punch, cut and shape metal sheets. Machines can be programmed or computer numerically controlled (CNC) to offer high precision and repeatability for each stamped piece. Electrical discharge machining (EDM) and computer-aided design (CAD) programs ensure accuracy. Various tooling machines for the dies used in the stampings are available. Progressive, forming, compound, and carbide tooling perform specific stamping needs. Progressive dies can be used to create multiple pieces on a single piece simultaneously.

Metal stamping is a cold-forming process that makes use of dies and stamping presses to transform sheet metal into different shapes. Pieces of flat sheet metal, typically referred to as blanks, is fed into a sheet metal stamping press that uses a tool and die surface to form the metal into a new shape. Production facilities and metal fabricators offering stamping services will place the material to be stamped between die sections, where the use of pressure will shape and shear the material into the desired final shape for the product or component.
Basic Concepts of Metal Stamping
Metal stamping, also referred to as pressing, is a low-cost high-speed manufacturing process that can produce a high volume of identical metal components. Stamping operations are suitable for both short or long production runs, and be conducted with other metal forming operations, and may consist of one or more of a series of more specific processes or techniques, such as:

Punching
Blanking
Embossing
Coining
Bending
Flanging
Punching and blanking refer to the use of a die to cut the material into specific forms. In punching operations, a scrap piece of material is removed as the punch enters the die, effectively leaving a hole in the workpiece. Blanking, on the other hand, removes a workpiece from the primary material, making that removed component the desired workpiece or blank.

Embossing is a process for creating either a raised or recessed design in sheet metal, by pressing the raw blank against a die that contains the desired shape, or by passing the material blank through a roller die.

Coining is a bending technique wherein the workpiece is stamped while placed between a die and the punch or press. This action causes the punch tip to penetrate the metal and results in accurate, repeatable bends. The deep penetration also relieves internal stresses in the metal workpiece, resulting in no spring back effects.

Bending refers to the general technique of forming metal into desired shapes such as L, U, or V-shaped profiles. The bending process for metal results in a plastic deformation which stresses above the yield point but below the tensile strength. Bending typically occurs around a single axis.

Flanging is a process of introducing a flare or flange onto a metal workpiece through the use of dies, presses, or specialized flanging machinery.

Metal stamping machines may do more than just stamping; they can cast, punch, cut and shape metal sheets. Machines can be programmed or computer numerically controlled (CNC) to offer high precision and repeatability for each stamped piece. Electrical discharge machining (EDM) and computer-aided design (CAD) programs ensure accuracy. Various tooling machines for the dies used in the stampings are available. Progressive, forming, compound, and carbide tooling perform specific stamping needs. Progressive dies can be used to create multiple pieces on a single piece simultaneously.

What advantages do Waterproof circular connectors bring?2022-09-18T23:54:20+08:00

First, Contact resistance.

This is a waterproof round ConnectorFor the performance of common electrical equipment, the contact resistance of high-quality connectors should be relatively stable. Generally speaking, the change of resistance ranges from a few milliohms to tens of milliohms.

Second, the insulation resistance of waterproof plug.

Waterproof round ConnectorThe insulation resistance is also one of the main indexes of its electrical performance. Insulation resistance can measure the insulation performance between the contact parts of the connector and the shell. In industry regulations, the insulation range ranges from hundreds of megaohms to thousands of megaohms.

In addition, the waterproof circular connector also has reflection coefficient, characteristic impedance, current and other coefficients, characteristic impedance, current and so on.

Is Sinrui’s gold plating always lead-free and RoHS compliant?2022-09-18T23:54:03+08:00

Yes, Sinrui’s gold plating is always lead-free and RoHS compliant (pre-plated or in house plated).

Will Sinrui provide a formal RoHS CoC (Certificate of Compliance) for their products?2022-09-18T23:53:27+08:00

Yes, upon request, Sinrui will provide a formal CoC. Please provide Company name and address as well as Company contact and contact information of the person requesting the CoC along with valid Sinrui part numbers to our General Technical Support Group.

What is the optimal signal-to-ground ratio?2022-09-18T23:53:03+08:00

A signal-to-ground ratio of 1:1 is usually optimal, but for connectors with large pin arrays signal-to-ground rations of less than 1:1 may be required for reliable high speed single-ended operation.

Title

Go to Top